Photochemical Reduction of Aromatic Imines by 2-Phenyl-N, N-dimethylbenzimidazoline

Mei Zhong JIN, Li YANG, Long Ming WU, You Chen LIU, Zhong Li LIU*

National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: A series of aromatic imines were reduced to corresponding amines in excellent yields by 2-phenyl-N, N-dimethylbenzimidazoline (PDMBI) photochemically in the presence of magnesium perchloride (Mg(ClO₄)₂). A Mg²⁺ mediated photoinduced electron transfer mechanism was proposed.

Keywords: Photoinduced electron transfer, selective reduction, imine, PDMBI.

Reduction of C=N double bonds has been recognized as an important reaction both in organic chemistry and bio-chemistry¹. Hantzsch 1,4-dihydropyridine (HEH, one of NADH model compounds) has been reported as a reductive reagent for imines². However, application of dihydropyridines as practical reducing reagents in organic synthesis is limited because of their instability³.

Like NADH models, 2-phenyl-N, N-dimethylbenzimidazoline (PDMBI) is an efficient electron and hydrogen donor $(E_{ox} = 0.32V vs \text{ SCE})^4$, but it is chemically more stable than NADH models, so it can be stored for a long time as a chemical reagent. However, the research of PDMBI was just limited in de-halogenation⁵ and reduction of some C=C bonds⁶. Furthermore, its photochemistry has been paid much less attention⁴.

Here, we report the photochemical reduction of imines by PDMBI. In a typical experiment, imines 1 (1 mmol), PDMBI (1.2 mmol) and magnesium perchloride (1 mmol) were dissolved in 10 ml of acetonitrile and deoxygenated by argon bubbling for 10 minutes, then irradiated with a 500 W high pressure Hg-lamp (monitored by TLC). The products amines 2 were isolated by column chromatography with neutral alumina and identified by NMR and MS. These results are summarized in Scheme 1 and Table 1.

Scheme 1

Mei Zhong JIN et al.

Sub.	Ar^1	Ar^2	t/h	Conversions(%)	Products	Yields(%)
1a	Ph	Ph	1	100	2a	94
1b	Ph	$4-Cl-C_6H_4$	1	100	2b	92
1c	PhCH=CH	Ph	1	100	2c	91
1d	PhCH=CH	$4-Cl-C_6H_4$	1	100	2d	95
1e	3,4-(CH ₂ O ₂)C ₆ H ₃	Ph	1	100	2e	96
1f	Ph	$4-CH_3OC_6H_4$	1	100	2f	90
1g	$4-NO_2C_6H_4$	4-CH ₃ Ph	1	100	2g	92
1h	$4-F-C_6H_4$	Ph	1	100	2h	93

Table 1 Photochemical reduction of aromatic imines 1a-h to 2a-h by PDMBI

As shown in **Table 1** this is a clean and efficient reaction with excellent yield. Furthermore, it exhibits good selectivity between C=N double bond and other functional groups. The C=C double bonds of **1c** and **1d**, nitro moiety of **1g** were all kept intact and no de-halogenation took place in the case of **1b**, **1d** and **1h**.

This reaction may be initiated by photoinduced electron transfer. Magnesium ion lowers the free energy of activation for the initial single electron transfer step and makes the reduction take place⁷.

In conclusion, we developed a new photochemical reductive reaction of aromatic imines by PDMBI in the presence of magnesium perchloride. Extension of this reaction is in progress.

Acknowledgment

The authors thank the National Natural Science Foundation of China (Grant No. 29972018) for financial support.

References

- 1. E. L. Smith, B. H. Austen, K. M. Blumenthal, J. F. Nye, *The Enzymes*, P. D. Boyer ed., Academic press, New York, **1975**, Vol IX, 357.
- 2. S. Singh, V. K. Sharma, S. Gill, R. I. K. Sahota, J. Chem. Soc. Perkin. Trans. 1, 1985, 437.
- 3. S. Fukuzumi, T. Tanaka, in *Photoinduced Electron Transfer, Part C*, M. A. Fox, M. Chanon (ed.), Elsevier, New York, **1988**, 578.
- 3. E. Hasegawa, T. Kato, T. Kitazume, K. Yanagi, K. Hasegawa, T. Horaguchi, *Tetrahedron Lett.*, **1996**, *37*, 7079.
- a) H. Chikashita, H. Ide, H. Itoh, J. Org. Chem., 1986, 51, 5400. b) D. D.Tanner, J. J. Chen, L. Chen, C. Luelo, J. Am. Chem. Soc., 1991, 113, 8074. c) D. D. Tanner, J. J. Chen, J. Org. Chem., 1989, 54, 3842.
- 5. H. Chikashita, K. Itoh, Bull. Chem. Soc. Jpn., 1986, 59, 1747.
- 6. A. Ohno, H. Yamamoto, S. Oka, J. Am. Chem. Soc., 1981, 103, 2041.

Received 7 July, 2000